Abstract
We give upper and lower bounds on the leading coefficients of the $L^2$-Alexander torsions of a $3$-manifold $M$ in terms of hyperbolic volumes and of relative $L^2$-torsions of sutured manifolds obtained by cutting $M$ along certain surfaces. We prove that for numerous families of knot exteriors the lower and upper bounds are equal, notably for exteriors of 2-bridge knots. In particular we compute the leading coefficient explicitly for 2-bridge knots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.