Abstract
Halide perovskites have distinguished themselves among the numerous optoelectronic materials due to their versatile processing technology and exceptional optical response. Unfortunately, their stability and toxicity from heavy metals severely hamper their development, in addition to the challenge of further improving photovoltaic performance. Hence, a lead-free perovskite-based heterojunction, C2N/CsGeI3, is investigated using a hybrid density functional, including electron structures, charge density differences, optical properties and more. The study reveals the presence of a built-in electric field directed from the CsGeI3 to the C2N layer. Moreover, based on the work function, it is confirmed that the electrons are transferred in a Z-scheme mechanism after the CsGeI3 contacts with the C2N layer. Under light irradiation, the construction of the C2N/CsGeI3 heterojunction significantly enhances optical absorption within the range of visible-light wavelengths. Additionally, the impact of interfacial strain on the C2N/CsGeI3 is explored and discussed. These findings not only suggest that the C2N/CsGeI3 heterojunction holds promise for photovoltaic applications but also provide a theoretical insight into lead-free perovskite-based functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.