Abstract

Contaminated mining soils could lead to heavy metal pollution of surrounding farmlands under rainfall conditions. With the aids of sequential extraction, batch leaching, and dynamic leaching experiments, this study was carried out to investigate the characteristics of heavy metals in contaminated mining soils, understand their leaching behavior under different rainfall conditions, and evaluate the potential effects on surrounding farmlands. The results indicated that the concentrations of heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the contaminated mining soils were several or even twenty times higher than their corresponding background values, and Cd, Zn, Cu and Pb had considerable proportions (>50 %) in mobile forms. The leaching amounts of heavy metals from the contaminated mining soils had positive correlation with their contents in acid soluble form, and showed strong dependence on rainfall pH conditions. Acid rainfalls (pH = 4.32) can greatly increase the average annual release of Cd, Zn, Cu and Pb from mine soils in the study area, with increments ranging from 72.4 % (Pb) to 85.9 % (Cd) compared to those under alkaline conditions (pH = 7.42). The leaching of heavy metals was well fitted by two-constant, pseudo second-order and parabolic equations, indicating that their multi-layer sorption/desorption behavior on soil surface was dominated by chemical processes and their release was controlled by the diffusion within the soil pore channels. The two-column leaching experiment showed that the metal-rich leachate can lead to obvious increments of heavy metals in non-residual fractions (in particular Cd in acid soluble form) in surrounding farmlands, which would significantly raise the potential ecological risk associated with heavy metals. These findings indicate the importance of contaminated mining soils as a long-term source of heavy metals and the needs for mitigating the releases of toxic elements, especially in areas with heavy acid precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call