Abstract
Topological insulators are materials where current does not flow through the bulk, but along the boundaries, only. They are of particular practical importance, since it is considerably more difficult, by “conventional” means, to affect their transport properties, than for the case of conventional materials. They are, thus, particularly robust to perturbations. One way to accomplish such changes is by engineering defects. The defects that have been the most studied are domain walls; however flux compactifications can also work. We recall the domain wall construction and compare it to the construction from flux compactification. A particular way of engineering the presence of such defects is by introducing anisotropic couplings for the gauge fields. In this case, a new phase appears, where matter is confined along layers and local degrees of freedom cannot propagate through the bulk. It is also possible to take into account the “backreaction” of the dynamics of the gauge fields on the defects and find that a new phase, the layered phase, where, while transport of local degrees of freedom is confined to surfaces, the topological properties can propagate through the bulk, constituting an example of anomaly flow. The anisotropy itself can be understood as emerging from a particular Maxwell-dilaton coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.