Abstract

AbstractLawsonite equilibria are predicted to occur over a broad P–T spectrum developed during subduction, yet lawsonite‐bearing assemblages are rare. In the context of mafic mineral equilibria modelled for the range of common crustal metamorphism (4–23 kbar, 400–750 °C) using the system Na2O‐CaO‐K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O and the software thermocalc, unusually high water contents are demanded by lawsonite assemblages. As a consequence, lawsonite assemblages are predicted to have difficulty forming and lawsonite equilibria to be uncommon. Metabasalt undergoing cooler subduction may experience substantial periods involving the metastable persistence of mineral assemblages because of water under‐saturation with non‐occurrence of recrystallization. If formed, lawsonite‐bearing assemblages are observed to be highly unstable; their preservation requires that exhumation be accompanied by substantial cooling. The amount of structurally bound H2O in minerals plays a critical role in the formation and preservation of mineral assemblages, controlling key changes in rocks undergoing subduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call