Abstract
Laws of thermodynamics have been examined for the universe filled with a perfect fluid, obeying an adiabatic equation of state p = γρ-A/ρα (called modified Chaplygin gas), where γ, A and α are positive constants and ρ and p are energy density and thermodynamic pressure respectively. Using general thermodynamics, the behavior of temperature and the thermodynamic stability has been discussed for modified Chaplygin gas. A scenario is obtained such that the thermal equation of state depends on both temperature and volume and there will be thermodynamic stability during the expansion process so that the fluid cools down through the expansion without any phase transition (or passing through any critical point).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.