Abstract
In this article we study convex non-autonomous variational problems with differential forms and corresponding function spaces. We introduce a general framework for constructing counterexamples to the Lavrentiev gap, which we apply to several models, including the double phase, borderline case of double phase potential, and variable exponent. The results for the borderline case of double phase potential provide new insights even for the scalar case, i.e., variational problems with 0-forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.