Abstract
By a theorem of R. Stanley, a graded Cohen-Macaulay domain A is Gorenstein if and only if its Hilbert series satisfies the functional equation:where, d is the Krull dimension and a is the -invariant of A. We reformulate this functional equation in terms of an infinite system of linear constraints on the Laurent coefficients of at t = 1. The main idea consists of examining the graded algebra of formal power series in the variable x that fulfill the condition . As a byproduct, we derive quadratic and cubic relations for the Bernoulli numbers. The cubic relations have a natural interpretation in terms of coefficients of the Euler polynomials. For the special case of degree these results have been investigated previously by the authors and involved merely even Euler polynomials. A link to the work of Gould and Carlitz on power sums of symmetric number triangles is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.