Abstract

We analyze the lattice dislocation trapping mechanism at the ferrite/cementite interface of the Isaichev orientation relationship by atomistic simulations combined with the anisotropic linear elasticity theory and disregistry analysis. We find that the lattice dislocation trapping ability is varied by initial position of the lattice dislocation. The lattice dislocation near the interface is attracted to the interface by the image force generated by the interface shear, while the lattice dislocation located far is either attracted to or repelled from the interface, or even oscillates around the introduced position, depending on the combination of the stress field induced by the misfit dislocation array and the image stress field induced by the lattice dislocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.