Abstract

The flash-lag illusion (FLI) is a visual phenomenon where a flashed object, either co-localized or in physical alignment with another continuously moving object, is perceived to lag behind the path of the moving object. In the present study, we reveal an anisotropy of the FLI between the lateral visual fields that was expressed psychophysically as different points of subjective equality, depending on the hemifield in which the stimuli appeared. Specifically, the study confirmed that, as seen in two previous studies, the FLI was significantly larger in the left visual field (LVF) than in the right (RVF). In addition, pupil dilations were larger in the RVF than in the LVF as well as returning to baseline levels more rapidly in the LVF. We interpret these findings as converging on revealing more efficient spatial and attentional processing and, in turn, extrapolation of motion in the LVF/right hemisphere than in the RVF/left hemisphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call