Abstract

The highly productive upwelling zone in the Southeast Pacific provides inputs of C and N to the oceanic deep-water system via lateral transport, although the quality of this organic matter, the organisms being transported, and the controlling mechanisms are unclear. Here, we assessed whether the taxonomic and trophic structure of zooplankton over more oceanic offshore waters differ from that of zooplankton located in the upwelling zone, along with the characterization of the oceanographic processes and variables associated with the lateral transport. For this, epipelagic, mesopelagic, and bathypelagic zooplankton along with oceanographic variables and particulate organic matter (POM) were analyzed at the upwelling zone and adjacent oceanic stations off Central Chile (27–33°S), some of which were located over the Atacama trench, during September 2016. The community structure of size-fractioned zooplankton (<200 μm, 200–500 μm, 500–1000 μm, 1000–2000 μm, and >2000 μm size classes) was assessed by an automated method, along with the analysis of the isotopic niche computed from their δ 15 N and δ 13 C. The isotope signatures of POM indicated that diatoms contributed mostly to production of new organic C, being the main food source for small-sized zooplankton in coastal waters. The zooplankton community structure differed between the upwelling and oceanic areas, but their isotopic signature showed a large overlap (78%). Satellite-derived geostrophic flow and the depth of the mixed layer appeared as the main factors explaining the homogeneity in the isotopic and biogeochemical signatures of zooplankton between the upwelling zone and offshore waters. Cross-shelf advection is thus suggested as a key process promoting zooplankton export to the deep-water ecosystem, including the ultra-deep Atacama Trench. • The organic matter produced in the upwelling zone can be transported over the Atacama trench by strong offshore advection. • Isotopic niches of zooplankton from the Atacama Trench and the upwelling zone exhibit large overlapping (78%). • The upwelling systems acts as a C subsidiary for the offshore deep-sea ecosystem including the Atacama Trench.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.