Abstract

The form of contact seam (whether a continuous parallel seam or membranes in spatially periodic contact) has been characterized for normal and for neuraminidase pretreated human erythrocytes following adhesion in solutions of polylysine in the molecular mass range 10-225 kDa at concentrations from 0.5 to 1.0 mg/mL. The adhesion contact seam was spatially periodic for all normal control cells in polylysine. The lateral separation of contacts decreased from 1.6 to 0.8 microns as the concentration of 225 kDa polylysine was increased threefold from the adhesion threshold value. The separation distance did not change further even at high polymer concentrations that increased the electrophoretic velocity to positive values over twice the modulus of the velocity of control cells. The probability of cell adhesion decreased at these high polymer concentrations. The lateral contact separation increased and cell adhesion decreased for cells pretreated with neuraminidase. Cell adhesion did not occur when neuraminidase reduced the cell electrophoretic velocity modulus by 30%. Following neuraminidase pretreatments that allowed a small amount of adhesion, the cell contact seam was continuous rather than spatially periodic. The results show that a procedure that increases (e.g., polymer concentration increase) or decreases (e.g., enzyme removal of polycation crosslinking site) attraction leads to shorter (to a limiting value) or longer lateral contact separation, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.