Abstract
When encountering a unidirectional flow, many fish exhibit an unconditioned orienting response known as rheotaxis. This multisensory behavior can reportedly involve visual, vestibular, tactile and lateral line cues. However, the precise circumstances under which different senses contribute are still unclear and there is considerable debate, in particular, about the contributions of the lateral line. In this study, we investigate the rheotactic behavior of blind cavefish under conditions of spatially non-uniform flow (a jet stream), which in theory, should promote reliance on lateral line cues. The behavior of individual lateral line enabled and disabled fish was videorecorded under IR light in a square arena that prevented streamwise biases and that contained a narrow jet stream in the center of the tank. Whereas the stream's peak velocity (8 cm s(-1)) declined very little in the streamwise direction, it declined steeply in the cross-stream direction (∼3-4.5 cm s(-1)cm(-1)). Lateral line enabled fish showed higher levels of orientation to the stream and its source (a 1-cm-wide nozzle) when in the central (jet stream) region of the tank compared with surrounding regions, whereas lateral line disabled fish showed random orientations in all regions of the tank. The results of this study indicate that the spatial characteristics of flow play a role in determining the sensory basis of rheotaxis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.