Abstract
This article reviews findings that have accumulated since the original description of the syndrome that follows destruction of the lateral hypothalamic area (LHA). These data comprise the areas of neuroanatomy, body weight regulation, neuroendocrinology, neurochemistry, and intermediary metabolism. Neurons in the LHA are the largest in the hypothalamus, and are topographically well organized. The LHA belongs to the parasympathetic area of the hypothalamus, and connects with all major parts of the brain and the major hypothalamic nuclei. Rats with LHA lesions regulate their body weight set point in a primary manner and not because of destruction of a "feeding center". The lower body weight is not due to finickiness. In the early stages of the syndrome, catabolism and running activity are enhanced, and so is the activity of the sympathetic nervous system (SNS) as shown by increased norepinephrine excretion that normalizes one mo later. The LHA plays a role in the feedback control of body weight regulation different from ventromedial (VMN) and dorsomedial (DMN). Tissue preparations from the LHA promote glucose utilization and insulin release. Although it does not belong to the classical hypothysiotropic area of the hypothalamus, the LHA does affect neuroendocrine secretions. No plasma data on growth hormone are available following electrolytic lesions LHA but electrical stimulation fails to elicit GH secretion. Nevertheless, antiserum raised against the 1-37 fragment of human GHRF stains numerous perikarya in the dorsolateral LHA. The plasma circadian corticosterone rhythm is disrupted in LHA lesioned rats, but this is unlikely due to destruction of intrinsic oscillators. Stimulation studies show a profound role of the LHA in glucose metabolism (glycolysis, glycogenesis, gluconeogenesis), this mechanism being cholinergic. Its role in lipolysis appears not to be critical. In general, stimulation of the VMN elicits opposite effects. Lesion studies in rats show altered in vitro glucose carbon incorporation into several tissue fractions both a few days, and one mo after lesion production. Several of these changes may be due to the reduced food intake, others appear to be due to a "true" lesion effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.