Abstract

The NNE-trending Upper Rhine Graben (URG) of the European Cenozoic Rift System developed from c. 47 Ma onwards in response to changing lithospheric stresses in the northwestern foreland of the Alps. The composite graben structure consists of three segments, each c. 100 km long and 30–40 km wide, but flares to c. 60 km near its southern and to c. 80 km near its northern termination. Normal faulting induced a total extension of 5–8 km of the 1–2 km thick Mesozoic sedimentary Franconian platform and underlying Variscan basement rocks. However, distribution of an up to 3.5 km thick sedimentary graben fill and cumulative displacements near Eastern and Western Main Border fault systems suggest that subsidence of the graben floor and shoulder uplift created strong cross-sectional asymmetries. Cumulative W-down displacements >3 km along strongly segmented transfer faults in the east contrast with E-down displacements 600 km long zone that delimits the trailing edge of a SW-moving lithospheric block. In the URG area, NE–SW-oriented seismic anisotropy at sublithospheric depths of c. 60–80 km suggest active mantle flow in this direction as a possible driving force for the reactivation of pre-graben lithospheric shear zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.