Abstract
The Late Ordovician (Hirnantian) glaciation is examined through the North Gondwana record. This domain extended from southern high palaeo-latitudes (southeastern Mauritania, Niger) to northern lower palaeo-latitudes (Morocco, Turkey) and covered a more than 4000 km-wide section perpendicular to ice-flow lines. A major mid-Hirnantian deglaciation event subdividing the Hirnantian glaciation in two first-order cycles is recognised. As best illustrated by the glacial record in western Libya, each cycle comprises 2-3 glacial phases separated by ice-front retreats several hundreds kilometres to the south. From ice-proximal to ice-distal regions, the number of glacial surfaces differentiates (i) a continental interior with post-glacial reworking of the glacial surfaces), (ii) a glaciated continental shelf that is subdivided into inner (1-2 surfaces), middle (2-5 surfaces) and outer (a single surface related to the glacial maximum) glaciated shelves, and (iii) the non-glaciated shelf. Ice-stream-generated glacial troughs, 50-200 km in width, cross-cut these domains. These troughs are zones of preferential glacial erosion and subsequent sediment accumulation. A glacial deposi-tional sequence, bounded by two glacial erosion surfaces, records one glacial phase. The position either within or outside a glacial trough controls the stratigraphic architecture of a glacial sequence. Glaciomarine outwash diamictites are developed at or near the maximum position of the ice-front. During ice-sheet recession, and in an ice-stream-generated trough, a relatively thin sediment cover blankets the foredeepened erosion surface. An initial rapid ice-sheet withdrawal is inferred. Marine-terminating ice fronts then evolve later into more slowly retreating, land-terminating ice fronts. In adjacent inter-stream areas where a more gradual ice-sheet recession occurred, fluvio-glacial deposits prevailed. The progradation of a delta-shelf system, coeval with fluvial aggradation, that may be locally interrupted by a period of isostatic rebound, characterises the late glacial retreat to interglacial conditions. This model should facilitate the sequence stratigraphic interpretation of Late Ordovician glacial deposits and other ancient glacial successions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.