Abstract

New data are presented on the petrogeochemical composition, age, and formation conditions of the Late Neoproterozoic metarhyolite–basalt association of the Glushikha trough (Yenisei Ridge). The association is localized within the subaerial and shallow-water terrigenous-carbonate sediments of the Orlovka Group, which overlies Proterozoic rocks with unconformity. The felsic volcanics are essentially potassic and enriched in Rb, U, Th, and Fe. They show a weakly fractionated REE pattern with a prominent negative Eu anomaly. The basalts and picrite basalts have higher contents of Ti, Fe, P, HFSE, REE, U, Th, Ba, and Sr, and their spidergrams show no Nb or Ta depletion with respect to Th and LREE. These rocks have the petrochemical parameters of intraplate magmatic associations in continental rift zones. New geochronological data (SHRIMP II) on single zircon grains from the felsite porphyry of the metarhyolite–basalt association (717 ± 15 Ma) indicate Late Neoproterozoic volcanism in the Yenisei part of the Central block of the Trans-Angara region. According to Sm–Nd isotopic data, the rhyolites originate from Paleoproterozoic crust (TNd(DM) = 1757 Ma; TNd(DM-2st) = 1651 Ma; ∑Nd(T) = −2.7). The Orlovka volcanosedimentary rocks are rift-related, as evidenced by the following facts: (1) localization of the volcanosedimentary rocks in a narrow fault-line trough; (2) bimodal rhyolite-basaltic composition of the volcanics; and (3) petrology and geochemistry of the picrite basalts and basalts, typical of intraplate environments. The studies show that Late Neoproterozoic rifting and intraplate plume magmatism took place not only in the Tatarka–Ishimba fault zone but also in the Yenisei fault zone of the Yenisei Ridge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call