Abstract

The tectonic setting in which Jurassic igneous rocks of the Sanandaj-Sirjan Zone (SaSZ) of Iran formed is controversial. SaSZ igneous rocks are mainly intrusive granodiorite to gabbroic bodies, which intrude Early to Middle Jurassic metamorphic basement; Jurassic volcanic rocks are rare. Here, we report the age and petrology of volcanic rocks from the Panjeh basaltic-andesitic rocks complex in the northern SaSZ, southwest of Ghorveh city. The Panjeh magmatic complex consists of pillowed and massive basalts, andesites and microdioritic dykes and is associated with intrusive gabbros; the overall sequence and relations with surrounding sediments indicate that this is an unusually well preserved submarine volcanic complex. Igneous rocks belong to a metaluminous sub-alkaline, medium-K to high-K calc-alkaline mafic suite characterized by moderate Al2O3 (13.7–17.6wt%) and variable Fe2O3 (6.0–12.6wt%) and MgO (0.9–11.1wt%) contents. Zircon U-Pb ages (145–149Ma) define a Late Jurassic (Tithonian) age for magma crystallization and emplacement. Whole rock compositions are enriched in Th, U and light rare earth elements (LREEs) and are slightly depleted in Nb, Ta and Ti. The initial ratios of 87Sr/86Sr (0.7039–0.7076) and εNd(t) values (−1.8 to +4.3) lie along the mantle array in the field of ocean island basalts and subcontinental metasomatized mantle. Immobile trace element (Ti, V, Zr, Y, Nb, Yb, Th and Co) behavior suggests that the mantle source was enriched by fluids released from a subducting slab (i.e. deep-crustal recycling) with some contribution from continental crust for andesitic rocks. Based the chemical composition of Panjeh mafic and intermediate rocks in combination with data for other gabbroic to dioritic bodies in the Ghorveh area we offer two interpretations for these (and other Jurassic igneous rocks of the SaSZ) as reflecting melts from a) subduction-modified OIB-type source above a Neo-Tethys subduction zone or b) plume or rift tectonics involving upwelling metasomatized mantle (mostly reflecting the ~550Ma Cadomian crust-forming event).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.