Abstract

Changes in chironomid midge larval assemblages in Lateglacial (c. 13.5–10 ka yr BP) lake sediments from Whitrig Bog are used to infer climatic (temperature) change. The earliest sediments contain few, predominantly cold stenothermic taxa. This fauna is replaced by an assemblage dominated by thermophilic taxa, indicating rising temperatures. The relatively warm Interstadial is punctuated by at least two brief cold oscillations which are characterized by the return of certain cold‐water taxa and the demise of some elements of the thermophilic fauna. The earlier of the two oscillations was apparently shorter and colder than the second. The highest Lateglacial Interstadial temperatures were attained either shortly before or after the first cold oscillation. This timing of the Lateglacial thermal maximum is apparently later than has been previously inferred from fossil beetle data. The Lateglacial Interstadial is terminated by the Loch Lomond (Young Dryas) Stadial, which is indicated in this monolith by an abrupt return of cold stenothermic Chironomidae and the virtual elimination of thermophilic taxa. Temperatures during the Younger Dryas appear to have been colder than during either of the previous minor cold oscillations. Climatic inferences from chironomid analysis broadly support and augment conclusions drawn from sediment chemistry and palynological evidence derived from the same monolith, although there is evidence that the vegetation and chironomid responses to early postglacial warming were out of phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call