Abstract

AbstractInfrequent, large‐magnitude discharge (>106 m3/s) outburst floods—megafloods—can play a major role in landscape evolution. Prehistoric glacial lake outburst megafloods transported and deposited large boulders (≥4 m), yet few studies consider their potential lasting impact on river processes and form. We use a numerical model, constrained by observed boulder size distributions, to investigate the fluvial response to boulder deposition by megaflooding in the Yarlung‐Siang River, eastern Himalaya. Results show that boulder deposition changes local channel steepness (ksn) up to ∼180% compared to simulations without boulder bars, introducing >100 meter‐scale knickpoints to the channel that can be sustained for >20 kyr. Simulations demonstrate that deposition of boulders in a single megaflood can have a greater influence on ksn than another common source of fluvial boulders: incision‐rate‐dependent delivery of boulders from hillslopes. Through widespread boulder deposition, megafloods leave a lasting legacy of channel disequilibrium that compounds over multiple floods and persists for millennia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call