Abstract

Milankovitch orbital parameters control cycles of insolation, a primary pacer of long term changes in climate, but exactly how insolation signals are transmitted around the globe in the climate system is unclear. In order to address the fundamental questions of when and how ice age climates begin and end, how fast glaciers retreated during the last deglaciation, and how glaciers behaved before anthropogenic influence, we need robust glacial chronologies. The timing of local glacial maxima beyond the last glacial cycle, however, has remained largely unconstrained due to moraine degradation over time, limiting our ability to fully explore these questions. By developing a detailed geomorphic surficial map and targeting relatively tall, ridge-top boulders, we have constructed a new, precise 10Be chronology of glacial maxima of the Ñirehuao glacier lobe (45°S) for the last two glacial cycles. We report one of the first directly dated records of a MIS 6 glacier advance in Patagonia, which formed a major set of moraines by at least 153 ± 5.1 ka, with a stillstand or smaller readvance by 137 ± 4.2 ka, corresponding to the two coldest and dustiest periods of MIS 6 in Antarctica. The next largest advance occurred at 23.6 ± 0.9 ka, at the end of peak Southern Hemisphere MIS 2 cooling. Retreat of the glacier commenced by ∼18.5 cal ka BP when lakes in a tributary valley just to the southwest became ice-free. Overall we find that advances of the Ñirehuao glacier lobe occur when winter sea ice around Antarctica is expansive and both obliquity and eccentricity are at their minima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.