Abstract
While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are valuable has an ineliminable philosophic aspect. His philosophy relies on the ideas of truth and existence he studied in Göttingen. His career is a case study relating naturalism in philosophy of mathematics to philosophy as it naturally arises in mathematics. 1. Introduction 2. Structures and Morphisms 3. Varieties of Structuralism 4. Göttingen 5. Logic: Mac Lane's Dissertation 6. Emmy Noether 7. Natural Transformations 8. Grothendieck: Toposes and Universes 9. Lawvere and Foundations 10. Truth and Existence 11. Naturalism 12. Austere Forms of Beauty
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.