Abstract

<p>Rapid sea-level rise, due to melting and destabilization of present-day ice sheets will likely have important consequences on human societies. Observations provide evidences of increased mass loss in the West Antarctic Ice Sheet (WAIS) over the recent decades, partly due to ocean warming. Despite improvements in both climate and ice-sheet models, there are still significant uncertainties about the future of West Antarctica, due, in part, to our misunderstanding of the process responsible for the marine ice sheet evolution. Paleoclimate studies provide important information on ice-sheet collapse in a warming world.</p><p>Our study is based on the Eurasian Ice Sheet (EIS) complex, including the British Island Ice Sheet (BIIS), the Fennoscandian Ice Sheet (FIS) and the Barents Kara Ice Sheet (BKIS). Because large parts of both the BKIS and the WAIS are marine-based, the BKIS at the LGM can be considered as a potential analogue to the WAIS.</p><p>To improve our understanding of the mechanisms responsible for the EIS retreat, we performed transient simulations of the last EIS deglaciation (21 000 – 8 000 yr BP) with the GRISLI ice sheet model forced by 5 PMIP3/PMIP4 models, and two transients GCM models, TRACE21K and iLOVECLIM. Our main goal is to investigate the sensitivity of the EIS grounding line retreat to climate forcing, sea-level rise and glaciological processes with a focus on the BKIS evolution during the deglaciation and the behaviour of the large Bjornoyrenna ice stream.  </p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call