Abstract
Recent work concerning quantitative traits of interest has focused on selecting a small subset of single nucleotide polymorphisms (SNPs) from amongst the SNPs responsible for the phenotypic variation of the trait. When considered as covariates, the large number of variables (SNPs) and their association with those in close proximity pose challenges for variable selection. The features of sparsity and shrinkage of regression coefficients of the least absolute shrinkage and selection operator (LASSO) method appear attractive for SNP selection. Sparse partial least squares (SPLS) is also appealing as it combines the features of sparsity in subset selection and dimension reduction to handle correlations amongst SNPs. In this paper we investigate application of the LASSO and SPLS methods for selecting SNPs that predict quantitative traits. We evaluate the performance of both methods with different criteria and under different scenarios using simulation studies. Results indicate that these methods can be effective in selecting SNPs that predict quantitative traits but are limited by some conditions. Both methods perform similarly overall but each exhibit advantages over the other in given situations. Both methods are applied to Canadian Holstein cattle data to compare their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.