Abstract

The laser-triggered switching (LTS) of high-voltage spark gaps is considered. The basic theory is presented which predicts dependencies of the delay to breakdown and switching jitter on such variables as fill gas mixture and pressure, gap spacing, polarity, and geometry. It is shown that electrical arcs of several metres length can be directed by laser action. A complete set of experiments is reported which adequately support the proposed theory. The performance of LTS is considered and results are reported on multiple gap triggering, multiple channel triggering, triggering of voltages in excess of 3 mV, repetitive switching at rates up to 50 pps with subnanosecond jitter, as well as various geometries, pulse forming demonstrations, and output voltage selection on a Marx generator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call