Abstract

We successfully established a mass production system for an influenza virus-like particle (VLP) vaccine using a synthetic H5 hemagglutinin (HA) gene codon-optimized for the silkworm. A recombinant baculovirus containing the synthetic gene was inoculated into silkworm pupae. Four days after inoculation, the hemagglutination titer in homogenates from infected pupae reached a mean value of 0.8 million hemagglutination units (HAU), approximately 2,000μg HA protein per pupa, more than 50-fold higher than that produced with an embryonated chicken egg. VLPs ranging from 30nm to 300nm in diameter and covered with a large number of spikes were detected in the homogenates. The spikes were approximately 14nm long, similar to an authentic influenza HA spike. Detailed electron micrographs indicated that the VLP spike density was similar to that of authentic influenza virus particles. The results clearly show that the expression of a single HA gene can efficiently produce VLPs in silkworm pupae. When chickens were immunized with the pupae homogenate, the hemagglutination inhibition titer in their sera reached values of 2,048–8,192 after approximately 1 month. This is the first report demonstrating that a large amount of VLP vaccine could be produced by single synthetic HA gene in silkworm pupae. Our system might be useful for future vaccine development against other viral diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.