Abstract

Two high-cadence surveys aiming for rotation period measurements of asteroids have been conducted in 2019 January and October using the Zwicky Transient Facility. From the surveys, 25 large superfast rotators (SFRs) were discovered and they are all main-belt asteroids (MBAs), except for one Mars crosser. These large SFRs have a diameter ranging from 0.43 to 7.87 km and a rotation period between 0.48 and 1.95 hr. Considering their diameters and fast rotations, they cannot be explained by rubble-pile structure unless using extraordinary high bulk densities. Cohesion, if available, can conserve these large SFRs. The estimated cohesion for these large SFRs could be up to thousands of pascals, much higher than the currently estimated cohesion for asteroids and that generated by the regolith of Moon and Mars. Such high-level cohesion can be produced from fine-grain regolith, like clay. However, the availability of such fine-grain regolith for asteroids is still unknown. Although the possibility of these large SFRs being large monolithic objects cannot be ruled out, this scenario is very unlikely given that the timescale of disruptive impact for MBAs in a similar diameter range is 107–108 yr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call