Abstract

Magnetic Hα synoptic maps of the Sun for 1915–1999 are analyzed and the intensities of spherical harmonics of the large-scale solar magnetic field computed. The possibility of using these Hα maps as a database for investigations of long-term variations of solar activity is demonstrated. As an example, the magnetic-field polarity distribution for the Hα maps and the analogous polarity distribution for the magnetographic maps of the Stanford observatory for 1975–1999 are compared. An activity index A(t) is introduced for the large-scale magnetic field, which is the sum of the magnetic-moment intensities for the dipole and octupole components. The 11-year cycle of the large-scale solar magnetic field leads the 11-year sunspot cycle by, on average, 5.5 years. It is concluded that the observed weak large-scale solar magnetic field is not the product of the decay of strong active-region fields. Based on the new data, the level of the current (23rd) solar-activity cycle and some aspects of solar-cycle theory are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call