Abstract

Global vegetation models and terrestrial carbon cycle models are widely used for projecting the carbon balance of terrestrial ecosystems. Ensembles of such models show a large spread in carbon balance predictions, ranging from a large uptake to a release of carbon by the terrestrial biosphere, constituting a large uncertainty in the associated feedback to atmospheric CO2 concentrations under global climate change. Errors and biases that may contribute to such uncertainty include ecosystem model structure, parameters and forcing by climate output from general circulation models (GCMs) or the atmospheric components of Earth system models (ESMs), e.g. as prepared for use in IPCC climate change assessments. The relative importance of these contributing factors to the overall uncertainty in carbon cycle projections is not well characterised. Here we investigate the role of climate model-derived biases by forcing a single global ecosystem-carbon cycle model, with original climate outputs from 15 ESMs and GCMs from the CMIP5 ensemble. We show that variation among the resulting ensemble of present and future carbon cycle simulations propagates from biases in annual means of temperature, precipitation and incoming shortwave radiation. Future changes in carbon pools, and thus land carbon sink trends, are also affected by climate biases, although to a smaller extent than the absolute size of carbon pools. Our results suggest that climate biases could be responsible for a considerable fraction of the large uncertainties in ESM simulations of land carbon fluxes and pools, amounting to about 40% of the range reported for ESMs. We conclude that climate bias-induced uncertainties must be decreased to make accurate coupled atmosphere-carbon cycle projections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.