Abstract

Using the weak convergence approach to large deviations, we formulate and prove the large deviation principle (LDP) for W-random graphs in the cut-norm topology. This generalizes the LDP for Erdős–Rényi random graphs by Chatterjee and Varadhan. Furthermore, we translate the LDP for random graphs to a class of interacting dynamical systems on such graphs. To this end, we demonstrate that the solutions of the dynamical models depend continuously on the underlying graphs with respect to the cut-norm and apply the contraction principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.