Abstract

The recent changes in the thermohaline circulation of the Eastern Mediteranean caused by a transition from a system with a single source of deep water in the Adriatic to one with an additional source in the Aegean are described and assessed in detail. The name Cretan Sea Overflow Water (CSOW) is proposed for the new deep water mass. CSOW is warmer ( θ>13.6°C) and more saline ( S>38.80) than the previously dominating Eastern Mediterranean Deep Water (EMDW), causing temperatures and salinities to rise towards the bottom. All major water masses of the Eastern Mediterranean, including the Levantine Intermediate Water (LIW), have been strongly affected by the change. The stronger inflow into the bottom layer caused by the discharge of CSOW into the Ionian and Levantine Basins induced compensatory flows further up in the water column, affecting the circulation at intermediate depth. In the northeastern Ionian Sea the saline intermediate layer consisting of Levantine Intermediate Water and Cretan Intermediate Water (CIW) is found to be less pronounced. The layer thickness has been reduced by factor of about two, concurrently with a reduction of the maximum salinity, reducing advection of saline waters into the Adriatic. As a consequence, a salinity decrease is observed in the Adriatic Deep Water. Outside the Aegean the upwelling of mid-depth waters reaches depths shallow enough so that these waters are advected into the Aegean and form a mid-depth salinity-minimum layer. Notable changes have been found in the nutrient distributions. On the basin-scale the nutrient levels in the upper water column have been elevated by the uplifting of nutrient-rich deeper waters. Nutrient-rich water is now found closer to the euphotic zone than previously, which might induce enhanced biological activity. The observed salinity redistribution, i.e. decreasing values in the upper 500–1400 m and increasing values in the bottom layer, suggests that at least part of the transition is due to an internal redistribution of salt. An initiation of the event by a local enhancement of salinity in the Aegean through a strong change in the fresh water flux is conceivable and is supported by observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call