Abstract

We modify the freezing method introduced by Beyn and Thümmler in 2004 for analyzing rigidly rotating spiral waves in excitable media. The proposed method is designed to stably determine the rotation frequency and the core radius of rotating spirals, as well as the approximate shape of spiral waves in unbounded domains. In particular, we introduce spiral wave boundary conditions based on geometric approximations of spiral wave solutions by Archimedean spirals and by involutes of circles. We further propose a simple implementation of boundary conditions for the case when the inhibitor is nondiffusive, a case which had previously caused spurious oscillations. We then utilize our method to numerically analyze the large core limit. The proposed method allows us to investigate the case close to criticality where spiral waves acquire infinite core radius $r_c$ and zero rotation frequency $\omega$, before they begin to develop into retracting fingers. We confirm the linear scaling regime of a drift bifurcation for the rotation frequency and the core radius of spiral wave solutions close to criticality. This regime is unattainable with conventional numerical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.