Abstract

Here we investigated on the role of the calcium activated K+-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K+-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K+-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46) following depolarization. The intercept of the I/V curve was −33 mV. IbTX(10−8 – 4 × 10−7 M) reduced the K+-current at +30 mV with an IC50 of 1.85 × 10−7 M and an Imax of −46% (slope = 2.198) (n = 21). NS1619(10–100 × 10−6 M) enhanced the K+-current of +141% (n = 6), at −10 mV(Vm). TEA(10−5–10−3 M) reduced the K+-current with an IC50 of 3.54 × 10−5 M and an Imax of −90% (slope = 0.95) (n = 5). A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE) of +38% (10−4 M). IbTX showed an MPE of +42% at 10−8 M concentration, reducing it at higher concentrations. The MPE of the NS1619(100 × 10−6 M) was +42%. The PKC inhibitor staurosporine (0.2–2 × 10−6 M) antagonized the proliferative actions of IbTX and TEA. IbTX (10 × 10−9 M), TEA (100 × 10−6 M), and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases.

Highlights

  • The calcium activated K+-channels (BKCa) channels are ubiquitously present in most human cells and play an essential role in the regulation of basic cellular processes such as electrical excitability of cell membrane, vascular tone, neurotransmitter release (Zhang et al, 2003; Tricarico et al, 2005; Lee and Cui, 2010).BKCa channels are composed by the alpha subunit encoded by one gene assembled as tetramer and transmembrane beta subunits encoded by KCNMB1-4 genes

  • IbTX (10 × 10−9 M), TEA (100 × 10−6 M), and the NS1619 significantly enhanced the protein kinase C (PKC) and protein kinase A (PKA) activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA

  • Curve on the voltage membrane axis was −33 mV which is consistent with the depolarized resting potential characterizing the SH-SY5Y neuronal cell line (Yang and Brackenbury, 2013)

Read more

Summary

Introduction

The calcium activated K+-channels (BKCa) channels are ubiquitously present in most human cells and play an essential role in the regulation of basic cellular processes such as electrical excitability of cell membrane, vascular tone, neurotransmitter release (Zhang et al, 2003; Tricarico et al, 2005; Lee and Cui, 2010).BKCa channels are composed by the alpha subunit encoded by one gene (slo1/KCNMA1) assembled as tetramer and transmembrane beta subunits (beta1-4) encoded by KCNMB1-4 genes. The calcium activated K+-channels (BKCa) channels are ubiquitously present in most human cells and play an essential role in the regulation of basic cellular processes such as electrical excitability of cell membrane, vascular tone, neurotransmitter release (Zhang et al, 2003; Tricarico et al, 2005; Lee and Cui, 2010). The alpha subunit of BKCa channels may assemble with beta-subunits with 1:1 stoichiometry enhancing the calcium sensitivity, favoring the trafficking into the membrane and modulating the pharmacological responses (Kyle and Braun, 2014). Several gamma subunits have been identified in excitable and non-excitable tissues modulating the gating of a BKCa channel by enhancing the allosteric coupling between voltage-sensor activation and the channel’s closed-open transition (Yan and Aldrich, 2010, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call