Abstract

Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.