Abstract
BackgroundThe lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis.ResultsHere, we studied the growth of Staphylococcus aureus in the presence of subinhibitory concentrations of mersacidin. Transcriptional data revealed an extensive induction of the cell wall stress response, which is partly controlled by the two-component regulatory system VraSR. In contrast to other cell wall-active antibiotics such as vancomycin, very low concentrations of mersacidin (0.15 × MIC) were sufficient for induction. Interestingly, the cell wall stress response was equally induced in vancomycin intermediately resistant S. aureus (VISA) and in a highly susceptible strain. Since the transcription of the VraDE ABC transporter genes was induced up to 1700-fold in our experiments, we analyzed the role of VraDE in the response to mersacidin. However, the deletion of the vraE gene did not result in an increased susceptibility to mersacidin compared to the wild type strain. Moreover, the efficacy of mersacidin was not affected by an increased cell wall thickness, which is part of the VISA-type resistance mechanism and functions by trapping the vancomycin molecules in the cell wall before they reach lipid II. Therefore, the relatively higher concentration of mersacidin at the membrane might explain why mersacidin is such a strong inducer of VraSR compared to vancomycin.ConclusionIn conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of S. aureus at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II. Additionally, mersacidin does not seem to be a substrate for the resistance transporter VraDE.
Highlights
The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728
In conclusion, mersacidin appears to be a strong inducer of the cell wall stress response of S. aureus at very low concentrations, which reflects its general mode of action as a cell wall-active peptide as well as its use of a unique target site on lipid II
While the growth of S. aureus SG511 was already inhibited by 1 μg/ml mersacidin in brain heart infusion (BHI) medium, the minimal inhibitory concentrations (MIC) of mersacidin against SA137/93A and SA137/ 93G were 35 μg/ml and 30 μg/ml in BHI broth, respectively
Summary
The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. strain HIL Y-85,54728. The lantibiotic mersacidin is an antimicrobial peptide of 20 amino acids that is ribosomally produced by Bacillus sp. Mersacidin acts by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby inhibiting the transglycosylation reaction of peptidoglycan biosynthesis. Lantibiotics form a particular group among the antimicrobial peptides (AMPs) and are characterized by unique structural features. These result from extensive posttranslational modifications that yield the ring forming thioether amino acids lanthionine and/or 3-methyllanthionine. Mersacidin inhibits the transglycosylation reaction of cell wall biosynthesis by complexing the sugar phosphate head group of the peptidoglycan precursor lipid II, thereby using a target binding site that is different from any other clinically used antibiotic [7]. It has been shown to successfully inhibit the growth of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus strains (MRSA) in vitro and in vivo [8,9,10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.