Abstract

BackgroundMore than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure.ResultsHere we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections.ConclusionsOur data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

Highlights

  • More than 2 billion individuals worldwide suffer from helminth infections

  • We have previously addressed the role of helminths as selective agents in human evolution analyzing a large set of human genes encoding interleukins and their receptors; we demonstrated that the pressure imposed by parasitic worms on these genes has been stronger than the one due to viral and microbial agents [4]

  • Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for single nucleotide polymorphism (SNP) that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas

Read more

Summary

Introduction

More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. We have previously addressed the role of helminths as selective agents in human evolution analyzing a large set of human genes encoding interleukins and their receptors; we demonstrated that the pressure imposed by parasitic worms on these genes has been stronger than the one due to viral and microbial agents [4]. The reasons for this observation likely lie in the long-term relationship between humans and helminths, in the relatively slow evolutionary rates of these parasites and in their geographic distribution being considerably stable. We aimed at exploiting the selection signatures left by these pathogens on human genes to identify, at the genomewide level, candidate genes and variants that may have been subjected to helminth-driven selective pressure

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.