Abstract

While glycosyltransferases are restrictively expressed in invertebrate model organisms, little is known of their glycan end products. One such restrictively expressed glycoepitope was localized to sensory and epithelial cells of leech and Caenorhabditis elegans using the Lan3-2 monoclonal antibody. A biological function for the neural Lan3-2 epitope was previously determined in the leech. Here we report on the chemical structure of this mannosidic epitope harvested from whole Hirudo medicinalis. Crude glycans were liberated from glycoproteins by hydrazinolysis. Re-N-acetylated glycans were subjected to immunoaffinity purification. The affinity-purified glycans were fractioned by size chromatography into oligosaccharides and polysaccharides. Lan3-2 oligosaccharide structure was characterized by gas chromatography of alditol acetates, methylation analysis, 500 MHz 1H NMR spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem MS-MS of permethylated derivatives. The predominant components of the Lan3-2 oligosaccharide fraction were a series of linear beta-(1,4)-linked mannose polymers. The homologous expression of the Lan3-2 epitope in C. elegans will facilitate the exploration of its glycosylation pathway. Other invertebrates expressing the Lan3-2 epitope are Planaria dugesia, Capitella sp. I and Lumbriculus variegatus. The glycoepitope was not detected in the diploblastic animals Hydra littoralis and Aptaisia sp. or in deuterostomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.