Abstract

lambda terminase is an ATP-interactive, site-specific endonuclease comprising the products of lambda genes Nu1 and A. Terminase binds to cos, at the junction of two chromosomes in a concatemer, catalyzes cos cleavage and initiates the packaging of lambda DNA into proheads. cos consists of a nicking domain, cosN, where terminase cleaves to regenerate the 12 nucleotide cohesive ends of mature lambda chromosomes and a binding domain, cosB, where terminase binds to 16 bp repeat sequences called R3, R2 and R1. Evidence is presented that terminase is a single-strand endonuclease that can nick DNA by one of two mechanisms, both of which require ATP. (i) When bound to any R site, terminase nicks the strand which, within that R site, is purine-rich; the position of this nick is 47 +/- 2 nucleotides away from the mid-point of that R site, measured in the 3' direction; (ii) enzymes that are not bound to R sites nick DNA within certain specific sequences that resemble cosN half sites. These two modes of action are nicely combined for the R3-bound protomer that nicks the bottom strand at position N1 in cosN since the interval between N1 and the R3 midpoint is 47 nucleotides. Within cosN, the bottom and top strand nicks are generated by a rigid protein couple with a 2-fold rotational symmetry. The location of both of these nicks, however, is gauged asymmetrically from R3, 47 nucleotides away. Again, R1 and R2 are separated by 47 bp and orient bound protomers towards each other but, unless the DNA between these R sites is lengthened, the enzymes do not nick, indicating an inhibitory gpA-gpNu1 apposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.