Abstract
Bacteria exposed to environmental stresses often exhibit superior acclimation abilities to environmental change. Acid treatment causes an increase in the cell length of the cyanobacterium Synechocystis sp. PCC6803 under light conditions. We aimed to elucidate the relationship between acidic stress and cell enlargement. After being synchronized under dark conditions, the cells were cultivated at different pH (pH 8.0 or pH 6.0) levels under light conditions. Synechocystis 6803 cells exhibited only cell growth occurred (cell volume expansion) and slow proliferation under the acidic condition. In the recovery experiment of the enlarged cells, they proliferated normally at pH 8.0, and the cell lengths decreased to the normal cell size under light conditions. Inhibition of cell division might be caused by acidic stress. To understand the effect of acidic stress on cell division, we evaluated the expression of FtsZ via Western blotting. The FtsZ concentration in cells was lower at pH 6.0 than at pH 8.0 and was not sufficient for cell division in the photoautotrophic conditions. ClpXP is well known as a regulator of the Z-ring dynamics in E. coli. The transcriptional level of four clpXP genes was upregulated approximately threefold at pH 6.0 after 24h compared with that in cells grown at pH 8.0. The lack of FtsZ may be caused by the upregulation of clpXP expression under acidic condition. Therefore, ClpXP may participate in the degradation of FtsZ and be involved in the regulation of cell division via FtsZ under acidic stress in Synechocystis 6803.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.