Abstract

Alternative oxidase (AOX) catalyses the ATP-uncoupling cyanide (CN)-resistant pathway. In this study, our aim was to clarify the physiological role of AOX at low temperature. We examined the effect of low-temperature treatment on CN-resistant respiration (CN-resistant R) and on the transcription of respiratory components in wild-type (WT) and aox1a knock-out transgenic (aox1a) Arabidopsis thaliana plants. In WT leaves, the expression of AOX1a mRNA was strongly induced by the low-temperature treatment, and thus CN-resistant R increased during low-temperature treatment. In aox1a, the CN-sensitive respiration, and the expression of NDB2 and UCP1 were increased compared with WT. We compared several physiological parameters between WT and aox1a. Low-temperature treatment did not result in a visible phenotype to distinguish aox1a from WT. In aox1a, several antioxidant defence genes were induced, and the malondialdehyde content was lower than in WT. Starch content and a ratio of carbon to nitrogen were higher in aox1a than in WT. Our results indicate that a lack of AOX was linked to a difference in the carbon and nitrogen balance, and an up-regulation of the transcription of antioxidant defence system at low temperature. It is likely that AOX is a necessary component in antioxidant defence mechanisms and for the control of a balanced metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call