Abstract

The serendipitous discoveries leading to the present knowledge on selenium's role in biology are reviewed. Detected in 1818 as by-product of sulphuric acid production, selenium first attracted medical attention as an industrial hazard. In parallel selenium intoxication was recognized as cause of life stock diseases. Reports on teratogenic effects and carcinogenicity of selenium followed since the middle of the past century. In 1954 first hints towards specific biological functions of selenium were contributed from microbiology, and its essentiality for mammalian life was discovered in 1957. Independent and unrelated studies led to the identification of selenium as an integral constituent of one mammalian and two bacterial enzymes in the early 70ies followed by the identification of selenocysteine in these proteins. In the 80ies, independent sequencing of selenoproteins and cloned DNAs revealed that the selenocysteine of selenoproteins is encoded by the termination codon TGA (UGA). Recoding of TGA as selenocysteine codon by secondary mRNA structures was first elucidated by molecular genetics in bacteria and later in mammals. During the 90ies, finally, the basic principles of selenoprotein synthesis were worked out by molecular biology tools. The article closes with spotlight comments on proven and potential biomedical benefits of selenium and related research deficits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call