Abstract

The microwave absorption spectrum of the CN molecule in the v=0 and v=1 vibrational states of the electronic ground state has been obtained in glow discharges in nitrogen–cyanogen mixtures at room temperature. Zeeman modulation is used for detection of the signal, and the microwave source is phase locked and digitally programmed by a computer. For each vibrational state the frequencies of the seven strongest hyperfine components of the N=0→1 rotational transition have been extracted from a careful regression analysis of the complex line shapes observed in the digitized spectral data. For the v=0 state the resulting rest frequencies and molecular parameters are in good agreement with, but more precise and accurate than, the values obtained from earlier radioastronomical studies. For the excited vibrational state the present work provides the first determination of the hyperfine parameters. The precision of the results for both states is sufficient to give a reliable measure of the variation of the spin–rotation constant (γ) and the hyperfine constants (b, c, and eQq) with vibrational quantum number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.