Abstract

O-methylguanine-DNA-methyltransferase (MGMT) is a crucial DNA repair protein that removes DNA adducts formed by alkylating mutagens. Several coding single nucleotide polymorphisms (cSNPs) in the MGMT gene have been reported. Their biological significance, however, is not known. We used a newly modified cloning HPRT mutant lymphocyte assay to test the hypothesis that inheritance of the L84F and I143V coding single nucleotide polymorphism in the MGMT gene is associated with increases in HPRT mutant frequency in lymphocytes of individuals exposed to alkylating agents. In addition, we expanded and sequenced 109 mutant clones to test the hypothesis that the mutation spectrum would shift to a larger percentage of base substitutions and G-->A transition mutations in cells with L84F and I143 V coding single nucleotide polymorphisms. We observed no significant effect for the I143 V coding single nucleotide polymorphism on mutant frequency. In contrast, we observed a significant increase in mutant frequency (P<0.01) in lymphocytes from smokers with the 84F coding single nucleotide polymorphism compared with smokers homozygous for the referent L84 wild-type allele. A multiple regression analysis indicated that the mutant frequency increased significantly as a function of the 84F coding single nucleotide polymorphism and smoking, according to the model; mutant frequency (x10)=0.90+0.618 (84F polymorphism)+0.46 (smoking) with R=0.22. Mutation spectra analysis revealed an apparent increase, which was short of statistical significance (P=0.08), in base substitutions in cells with the 84F polymorphism. These new data suggest that the 84F coding single nucleotide polymorphism may alter the phenotype of the MGMT protein, resulting in suboptimal repair of O-methylguanine lesions after exposure to alkylating agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.