Abstract

Smad proteins mediate the transforming growth factor beta responses. C-terminal phosphorylation of R-Smads leads to the recruitment of Smad4 and the formation of active signaling complexes. We investigated the mechanism of phosphorylation-induced Smad complex formation with an activating pseudo-phosphorylated Smad3. Pseudo-phosphorylated Smad3 has a greater propensity to homotrimerize, and recruits Smad4 to form a heterotrimer containing two Smad3 and one Smad4. The trimeric interaction is mediated through conserved interfaces to which tumorigenic mutations map. Furthermore, a conserved Arg residue within the L3 loop, located near the C-terminal phosphorylation sites of the neighboring subunit, is essential for trimerization. We propose that the phosphorylated C-terminal residues interact with the L3 loop of the neighboring subunit to stabilize the trimer interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call