Abstract
In this article we give an extension of the Lê-Greuel formula to the general setting of function germs $(f,g)$ defined on a complex analytic variety $X$ with arbitrary singular set, where $f = (f_1,\ldots,f_k): (X,\underline{0}) \to (\mathbb{C}^k,\underline{0})$ is generically a submersion with respect to some Whitney stratification on $X$. We assume further that the dimension of the zero set $V(f)$ is larger than 0, that $f$ has the Thom $a_f$-property with respect to this stratification, and $g: (X,\underline{0}) \to (\mathbb{C},0)$ has an isolated critical point in the stratified sense, both on $X$ and on $V(f)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.