Abstract

The aim of this paper is to examine the L-fuzzy prime filter degrees on lattices and their induced L-fuzzy convex structure. Firstly, the notion of L-fuzzy prime filter degrees on lattices is established using the implication operator when L is a completely distributive lattice. Secondly, an equivalent characterization of L-fuzzy prime filter degrees on lattices is provided. The equivalence relation, through the definitions of reflexivity, symmetry, and transitivity, provides a method for partitioning subsets within a lattice that possesses the prime filter property. Finally, the L-fuzzy convex structure induced by the L-fuzzy prime filter degrees on lattices is examined. Simultaneously, the properties of L-fuzzy prime filter degrees on lattices in relation to images and preimages under homomorphic mappings are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.