Abstract

Site-specific recombinases of the integrase family share limited amino-acid-sequence similarity, but use a common reaction mechanism to recombine distinct DNA target sites. Here we report the characterisation of the Kw site-specific recombinase, encoded on the 2 mu-like plasmid pKWS1 from the yeast Kluyveromyces waltii. Using in vitro-translated Kw recombinase, we show that the protein is able to bind and to recombine its putative DNA target site. Recombination is conservative and the Kw target site has a spacer of seven base pairs. We show that Kw recombinase is able to mediate recombination in a mammalian cell line, thus, it has potential for use as a tool for genomic manipulation in heterologous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.