Abstract

The three basic morphological types of neurons--unipolar, bipolar, and multipolar--are important for information processing and wiring of neural circuits. Little progress has been made toward understanding the molecular and cellular programs that generate these types since their discovery over a century ago. It is generally assumed that basic morphological types of neurons are determined by the number of dendrites growing out from the cell body. Here, we show that this model alone is insufficient. We introduce the positioning of nucleus as a critical factor in this process and report that the transcription factor Dar1 determines multipolar neuron morphology in postmitotic neurons by regulating genes involved in nuclear positioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.