Abstract
AbstractThe structural basis of the interaction between single-chain urokinase-type plasminogen activator (scuPA) and its receptor (uPAR) is incompletely defined. Several observations indicated the kringle facilitates the binding of uPA to uPAR. A scuPA variant lacking the kringle (ΔK-scuPA) bound to soluble uPAR (suPAR) with the similar “on-rate” but with a faster “off-rate” than wild-type (WT)-scuPA. Binding of ΔK-scuPA, but not WT-scuPA, to suPAR was comparably inhibited by its growth factor domain (GFD) and amino-terminal fragment (ATF). ATF and WT-scuPA, but not GFD, scuPA lacking the GFD (ΔGFD-scuPA), or ΔK-scuPA reconstituted the isolated domains of uPAR. ATF completely inhibited the enzymatic activity of WT-scuPA-suPAR unlike comparable concentrations of GFD. Variants containing mutations that alter the charge, length, or flexibility of linker sequence (residues 43-49) between the GFD and the kringle displayed a lower affinity for uPAR, were unable to reconstitute uPAR domains, and their binding to uPAR was inhibited by GFD in the same manner as ΔK-scuPA. A scuPA variant in which the charged amino acids in the heparin binding site (HBS) in the kringle domain were mutated to alanines behaved like ΔK-scuPA, indicating that that the structure of the kringle as well as its interaction with the GFD govern receptor binding. These data demonstrate an important role for the kringle in stabilizing the binding of scuPA to uPAR. (Blood. 2003;102:3600-3608)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.