Abstract
We investigate the role of magnetic impurities in the transport properties of surface states on a three-dimensional topological insulator. First, we use second-order perturbation theory and the Boltzmann transport equation to calculate the magnetically induced resistivity in a topological insulator. Our result shows a non-perturbative behavior when conducting electrons and magnetic impurities’ spins are antiferromagnetically coupled. The surface resistivity is found to display an oscillatory rather than isotropic behavior compared to the conventional Kondo effect. Both the variational method and renormalization group (RG) analysis are employed to compute the Kondo temperature, through which the non-perturbative behavior is confirmed. We further study the RG flows and demonstrate that the RG trajectories flow into a strong coupling regime if coupling is antiferromagnetic. Our work is motivated by the recent transport experiments with surface currents on topological insulators. Our calculation is qualitatively consistent with the low temperature dip observed in the experimental R–T curve and might be one of the possible origins of the dip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.